
Preprint ANL/MCS-P1858-0311

Scalable Stochastic Optimization of Complex Energy
Systems

Miles Lubin, Cosmin G. Petra, Mihai Anitescu, and Victor Zavala
Argonne National Laboratory

9700 S. Cass Avenue
Argonne, IL 60439, USA

{mlubin, petra, anitescu, vzavala}@mcs.anl.gov

ABSTRACT
We present a scalable approach and implementation for solv-
ing stochastic programming problems, with application to
the optimization of complex energy systems under uncer-
tainty. Stochastic programming is used to make decisions
in the present while incorporating a model of uncertainty
about future events (scenarios). These problems present se-
rious computational difficulties as the number of scenarios
becomes large and the complexity of the system and plan-
ning horizons increase, necessitating the use of parallel com-
puting. Our novel hybrid parallel implementation PIPS is
based on interior-point methods and uses a Schur comple-
ment technique to obtain a scenario-based decomposition
of the linear algebra. PIPS is applied to a stochastic eco-
nomic dispatch problem that uses hourly wind forecasts and
a detailed physical power flow model. Solving this problem
is necessary for efficient integration of wind power with the
Illinois power grid and real-time energy market. Strong scal-
ing efficiency of 96% is obtained on 32 racks (131,072 cores)
of the “Intrepid” Blue Gene/P system at Argonne National
Laboratory.

1. INTRODUCTION
Stochastic programming is one of the leading paradigms for
decision-making under uncertainty [3]. In this work, we con-
sider two-stage, convex, quadratic stochastic sample average
approximation problems of the form

min
xi,i=0,...,N

(
1

2
xT0 Q0x0 + cT0 x0

)
+

1

N

N∑
i=1

(
1

2
xTi Qixi + cTi xi

)
s.t. T0x0 = b0,

T1x0 + W1x1 = b1,
T2x0 + W2x2 = b2,
...

. . .
...

TNx0 + WNxN = bN ,
x0 ≥ 0, x1 ≥ 0 , x2 ≥ 0, . . . xN ≥ 0.

(1)

Here Q0 ∈ Rn0×n0 and Qi ∈ Rn1×n1 are symmetric pos-
itive semidefinite matrices; T0 ∈ Rm0×n0 , Ti ∈ Rm1×n0

are full row rank matrices known as technology matrices;
Wi ∈ Rm1×n1 are full row rank matrices known as recourse
matrices; and c0 ∈ Rn0 , ci ∈ Rn1 , b0 ∈ Rm0 , ci ∈ Rm1 (i =
{1, . . . , N}). The data indexed by zero are related to the
so-called first-stage (sub)problem. Each (Qi, ci, Ti,Wi, bi) is
called a sample or a scenario and is one of the N possible
realizations of the uncertainty associated with the second
stage (sub)problems.

Problems of form (1) are deterministic equivalents of two-
stage convex quadratic stochastic problems [17] with equiprob-
able and finitely many realizations (or scenarios) of the un-
derlying randomness. When the randomness is described by
an infinite or prohibitively large number of realizations, the
sample average approximation (SAA) method [22] is used to
obtain an approximate solution to the original problem by
solving a deterministic approximation problem of form (1).

Interior-point methods (IPMs) have been used as early as
1988 to decompose and solve SAA problems [4]. The SAA
problems are usually extremely large; and even though the
data are usually sparse, such problems can be solved only
with distributed or parallel computing. The decomposition
of the problem in the context of IPMs is achieved at the lin-
ear algebra level by taking advantage of the block-separable
form of the objective function and the half-arrow shape of
the Jacobian. The main computational effort of a interior-
point method consists of solving a symmetric indefinite lin-
ear system, known as a saddle-point linear system, at each
iteration. The special structure of SAA problems (1) al-
lows the matrix of the IPM saddle-point linear system to be
permuted to

Q̄1 WT
1 0 0

W1 0 T1 0
. . .

...
...

Q̄N WT
N 0 0

WN 0 TN 0
0 TT

1 . . . 0 TT
N Q̄0 TT

0

0 0 . . . 0 0 T0 0

. (2)

Each matrix Q̄i is the sum of 1
N
Qi and a diagonal ma-

trix with positive diagonal entries coming from the use of
interior-point methods. Linear systems having matrices of
the above form are known as symmetric bordered block-
diagonal or arrow-shaped linear systems. Solving such linear

systems by using the Schur complement of the lower right
2-by-2 first-stage saddle-point block allows most of the com-
putations to be performed independently for each scenario.
The only work that cannot be done independently for each
scenario consists of linear solves with the dense or almost
dense Schur complement matrix. The Schur complement
decomposition to parallelize IPMs has been implemented in
state-of-the-art software packages such as OOPS [11, 12, 13,
14] and IPOPT [26]. In particular, in [11] a six-stage prob-
lem having a total of approximately 1 billion variables and 16
million scenarios has been solved. We also note the approach
in [16], which uses asynchronous versions of L-shaped meth-
ods and a trust-region method to solve two-stage problems
with up to 125 million variables and up to 250,000 scenarios
on a heterogeneous computational grid.

The present work includes several novel techniques moti-
vated by the specific characteristics of the stochastic opti-
mization problems arising in the optimization of complex en-
ergy systems. Such problems have large dimensions in both
the first-stage and second-stage subproblems, because they
incorporate complex physics such as network constraints and
ramp constraints.

The large number of variables in the first-stage causes a
memory bottleneck when the dense Schur complement ma-
trix cannot fit entirely in the local memory of a compu-
tational node. Distributing the Schur complement matrix
(and linear solves with it) across nodes is the only feasible
alternative; however, assembling the distributed matrix is
nontrivial because all nodes contribute to all elements of the
matrix, necessitating a large amount of interprocess commu-
nication. Our streamlined assembly procedure is presented
in detail in Section 4.3.

When the dimension of the second-stage data increases, some-
times only one or two scenarios can fit on one computational
node with four or more cores, whereas our decomposition re-
quires a minimum of one scenario per MPI process. In this
case, using one MPI process per core is not possible because
of the memory limitations. Therefore, we implement a hy-
brid programming approach, SMP inside MPI, so that all
cores in each node are fully used.

PIPS, our solver, has important applications in diverse opti-
mization tasks arising in electricity markets and operations
and planning. In particular, a current challenge faced by
smart grid initiatives is effectively mitigating contingencies
(line failures) and demand and wind supply uncertainty. A
real example of demand and wind power variability is pre-
sented in Figure 1. Today this mitigation is done by using
conservative reserve margins and nonsystematic procedures.
This approach significantly increases prices and nationwide
emission levels. Motivated by this situation, researchers are
exploring stochastic programming as an enabling technology
to mitigate uncertainty. Because of the size of the networks
and geographical regions and the number of possible con-
tingencies, the central power operators (ISOs) already rely
on high-performance computing. Consequently, a massively
parallel stochastic programming solution has practical ap-
peal. In this work we study the particular problem of eco-
nomic dispatch that balances supply and demand to clear
the market in real time over a wide geographical region.

0 20 40 60 80 100 120

10
4

10
5

Time [hr]

P
o

w
e

r
[M

W
]

Load

30% Wind

20% Wind

10% Wind

Figure 1: Snapshot of total load and wind supply
variability at different adoption levels.

In our numerical tests, we obtain very good (96%) strong
scaling performance and solve a large-scale problem to com-
pletion. In the previous works mentioned, the scenarios had
no more than 500 variables per stage, whereas in our case we
solve a problem with 4,700 variables in the first stage and
14,000 variables in the second stage scenarios. The largest
linear system we solve directly is of order ∼1.4 billion. We
will also note the further developments needed to solve even
larger problems with important applications that have over
100,000 variables in the second stage.

2. STOCHASTIC PROGRAMMING FOR EN-
ERGY MARKETS AND OPERATIONS

Fast and uncertain fluctuations of supply and demand can-
not be effectively managed in the current power grid. In
Figure 1 we illustrate the magnitude and frequency of wind
supply fluctuations under different adoption levels compared
with a typical total load profile in Illinois. Since electricity
cannot be currently stored at a large scale, the grid is op-
erated by using conservative and expensive reserve levels
to mitigate operational risk associated with these fluctua-
tions and some other uncertain factors such as generator
and transmission line failures. Expanding the geographi-
cal domain, time resolution, and forecast horizon is critical
to enhance proactiveness, responsiveness, and market effi-
ciency under the more volatile environments expected in the
next-generation grid resulting from high levels of renewable
supply and more elastic demands.

Stochastic programming can be used to effectively mitigate
uncertainty and reduce reserves in next-generation grid en-
vironments. The nationwide economic and carbon foot-
print reduction potentials can be substantial; however, ad-
vances in algorithms and computing platforms are necessary
to reach these goals. An important application of stochas-
tic programming is time-dependent market operational tasks
such as unit commitment and economic dispatch [21]. These
tasks set the prices in day-ahead and real-time markets, re-
spectively. In practice, the day-ahead market uses hourly

forecasts of demand and renewable supply to compute the
optimal on/off schedule of the generators and generation
levels that match the demands across a given geographical
region and satisfy physical Kirchoff’s laws and transmission
generation ramp constraints. The real-time market corrects
the generation levels at a higher frequency (5 minutes) to
account for forecast errors in the day-ahead market. A poor
forecast and management of uncertainty in the day-ahead
market can lead to high real-time prices (twice the magni-
tude of day-ahead prices) as a result of insufficient ramping
and transmission capacity. Poor management of uncertainty
in the real-time market can lead to dynamic instability. This
is particularly critical during peaking conditions as those ob-
served in the 2003 blackout in the Eastern interconnect and
during summer conditions in regions such as California.

In our analysis, we consider a two-stage stochastic program-
ming formulation for economic dispatch. The problem has
the following structure [25]:

min

(∑
j∈G

cj ·G0,`,j

)
+

1

N

∑
s∈N

(
`+T∑

k=`+1

∑
j∈G

cj ·Gs,k,j

)
(3a)

s.t. Gs,k+1,j = Gs,k,j + ∆Gs,k,j , s ∈ N , k ∈ T , j ∈ G (3b)∑
(i,j)∈Lj

Ps,k,i,j +
∑
i∈Gj

Gs,k,i =
∑
i∈Dj

Ds,k,i

−
∑
i∈Wj

Ws,k,i, s ∈ N , k ∈ T , j ∈ B (ps,k,j)

(3c)

Ps,k,i,j = bi,j(θs,k,i − θs,k,j), s ∈ N , k ∈ T , (i, j) ∈ L
(3d)

0 ≤ Gs,k,j ≤ Gmax
j , s ∈ N , k ∈ T , j ∈ G (3e)

|∆Gs,k,j | ≤ ∆Gmax
j , s ∈ N , k ∈ T , j ∈ G (3f)

|Ps,k,i,j | ≤ Pmax
i,j , s ∈ N , k ∈ T , (i, j) ∈ L (3g)

|θs,k,j | ≤ θmax
j , s ∈ N , k ∈ T , j ∈ B (3h)

Gs,`,j = G0,`,j , s ∈ N , j ∈ G. (3i)

Here, G,L,B are the sets of generators, lines, and buses in
the network in the geographical region, respectively. Dj ,Wj

are the sets of demand and wind supply nodes connected to
bus j, respectively. Symbol N denotes the set of uncertain
scenarios for the wind and demands over the time horizon
T := {`, ..., `+T} starting at the current instant ` and where
T is the horizon length. Variables Gs,k,j are the generator
supply levels for scenario s, time instant k, and bus j. Fol-
lowing a similar notation, Ps,k,j are the transmission line
power flows, θs,k,j are the bus angles, Ws,k,i are the wind
supply flows, and Ds,k,i are the demand levels. Constraint
(3c) is Kirchoff’s law, which holds at each scenario, time,
and bus and which implicitly contains the structure of the
network. The multipliers of Kirchoff’s law are the locational
marginal prices (LMPs) ps,k,j for each scenario, time instant,
and node. Constraints (3f) are the ramp constraints. The
objective costs can also be modeled as piecewise linear and
quadratic costs of the form cj · Gs,`,j + 1

2
hjG

2
s,`,j . In most

energy applications, the cost function is a positive definite
function with block-diagonal Qi matrices.

We note the presence of the nonanticipativity constraints

−92 −90 −88

37

38

39

40

41

42

43

° Longitude W

°
 L

a
ti
tu

d
e
 N

Figure 2: Illinois grid system.

(3i). These complicating constraints indicate that a unique,
implementable signal (scenario-independent) for the gener-
ator levels Gk,j must be computed by using the current
wind supply and demand information at time k = ` (which
are known). This implicitly sets unique LMPs pk,j for the
current time k = ` that are implemented in the market.
The nonanticipativity constraints give rise to the first-stage
(wait-and-see) variables in the stochastic programming for-
mulation (1). In this formulation, the total number of first-
stage variables is given by the number of generators. In
our implementation, nonanticipativity constraints are han-
dled implicitly by defining complicating variables x0 as in
formulation (1).

The economic dispatch must run in real time over a reced-
ing horizon that recursively updates the wind power supply
and demands. Both day-ahead and real-time optimization
problems have similar structures; the key difference is that
unit commitment makes integer decisions to turn generators
on/off under a coarse time resolution, whereas economic dis-
patch makes mostly continuous decisions under a fine time
resolution. At the core of both problems, however, a con-
tinuous and highly structured stochastic programming such
as (3) is solved. Since these are operational tasks, solution
time is critical in these environments.

For an idea of the magnitude and challenges posed by these
problems, the Illinois grid contains around 2,000 transmis-
sion nodes, 2,500 transmission lines, 900 demand nodes, and
300 generation nodes. Time horizons of 24 to 36 hours are
currently used in operations, and these are expected to in-
crease as wind power and smart grid programs are adopted.
In Figure 2 we illustrate the complexity of the Illinois grid.
A deterministic economic dispatch formulation over this ge-
ographical region can have as many as 100,000 variables
and inequality constraints. In a stochastic formulation, this
number of variables is effectively multiplied by the number
of uncertain scenarios. With thousands of scenarios, the

problems can easily have dozens of millions of variables. A
problem over the entire Midwest region can similarly reach
hundreds of millions of variables. In addition to the size of
the problem, the tight connectivity of the network and the
large number of wait-and-see decisions related to real-time
enforced generation levels severely complicate decomposi-
tion, memory storage, and scalability.

In this work we use PIPS to analyze the scalability and
real time solution capability of stochastic programming in
unit commitment and economic dispatch problems using real
problem data and dimensions. This has enabled us to pin-
point scalability deficiencies arising from physical systems
and to critically assess performance by using end-user speci-
fications. The analysis is important not only to demonstrate
the improvements in our developments but also to pave the
way for future computational research challenges associated
with the next-generation power grid.

3. DECOMPOSITION OF STOCHASTIC PRO-
GRAMMING PROBLEMS

We first describe the linear algebra behind the scenario-
based decomposition. We then present our specialized fac-
torization procedure for the dense Schur complement.

3.1 Schur complement decomposition of SAA
problems

In this section we present the linear algebra needed to solve
convex quadratic SAA problems of form (1) by interior-point
methods. We refer the reader to [12], [13], [14], or [18] for
more details on how the linear algebra is derived.

The deterministic SAA problem (1) has an arrow-shaped
structure that can be exploited to produce highly paralleliz-
able linear algebra. The matrix of the linear system that
needs to be solved at each iteration of the interior-point al-
gorithm can be simplified to the form

K :=

K1 B1

. . .
...

KN BN

BT
1 . . . BT

N K0

 . (4)

The main computational effort at each iteration of the interior-
point algorithm is solving linear systems of the form K∆z =
r. The structure of K allows us to express an explicit block
LDLT factorization, where L is a unit lower triangular ma-
trix and D is a diagonal matrix. One can easily verify that
L and D have the following particular structures,

L =

L1

. . .

LN

LN1 . . . LNN Lc

 , D =

D1

. . .

DN

Dc

 ,

where

LiDiL
T
i = Ki, i = 1, . . . , N, (5)

LNi = BT
i L
−T
i D−1

i , i = 1 . . . , N, (6)

C = K0 −
N∑
i=1

BT
i K

−1
i Bi, (7)

LcDcL
T
c = C. (8)

We note that C defined by (7) is the Schur complement of
the first-stage Hessian block K0 in the entire Hessian matrix
K.

Let ∆zi =
[

∆xTi ∆yTi
]T

, i = 0, 1, . . . , N ,

∆z =
[

∆zT1 . . . ∆zTN ∆zT0
]T

, and let r be of the form[
rT1 . . . rTN rT0

]T
. To solve the linear system K∆z =

r, we take the following steps:

wi = L−1
i ri, i = 1, . . . , N, (9)

w0 = L−1
c

(
r0 −

N∑
i=1

LNiwi

)
, (10)

v0 = D−1
0 w, vi = D−1

i wi, i = 1, . . . , N, (11)

∆z0 = L−1
c v0, (12)

∆zi = L−T
i (vi − LNi∆z0), i = 1, . . . , N. (13)

These operations can be divided into four phases:

• Factorization: steps (5), (6), and (8);

• Computation of the Schur complement matrix : step
(7);

• Forward substitution: steps (9) and (10);

• Diagonal solve: step (11);

• Back substitution: steps (12) and (13).

The computation of the Schur complement matrix, that is,
forming BT

i K
−1
i Bi for each scenario, is by far the most ex-

pensive phase. This phase, which we call the “backsolve”
phase, is embarrassingly parallel, since the calculations can
be performed independently. There are, however, communi-
cation costs to sum the contributions and explicitly form C.
In general, in any phase, operations related to the second
stage can be done independently for each scenario, yielding
the so-called scenario-based decomposition.

The factorization and triangular solves involving the dense
Schur complement matrix C are performed by using dis-
tributed dense linear algebra, with the specialized factoriza-
tion described below.

3.2 Specialized LDLT factorization for the Schur-
complement matrix

It has been shown [18] that the dense Schur-complement
system C has the saddle-point structure

C =

[
Q AT

A 0

]
, (14)

where Q is positive definite and A is full rank. Although
using a general LU (Gaussian elimination) routine to fac-
torize C presents a practicable solution, it is not ideal. We
would expect to be able to gain a 2x increase in performance
by using an algorithm that at least exploited the symmetric
structure. We describe below a specialized LDLT factoriza-
tion that exploits both the symmetric and the saddle-point
structure of C. This approach was first presented in [?].

The standard approach to solving symmetric indefinite sys-
tems is to use an LDLT decomposition, where L is lower
triangular and D is a block-diagonal matrix with blocks of
size 1 or 2. This is used in the Bunch-Kaufman [6] and
Bunch-Parlett [7] methods, which are numerically stable.

However, in the present case where the Q block is positive
definite and the matrix A is full rank, one can write an
explicit block form of the LDLT decomposition where D is
strictly diagonal:

C =

[
M 0

AM−T M̃

] [
I 0
0 −I

] [
MT M−1AT

0 M̃T

]
, (15)

where M and M̃ are lower triangular Cholesky factors sat-

isfying MMT = Q and M̃M̃T = AQ−1AT . These factors
necessarily exist because Q is positive definite, and therefore
AQ−1AT is positive definite as well because A has full rank.

While not directly practical in the sparse case, in the dense
case the factorization (15) can be formed explicitly in a
sequence of operations similar to a step of blocked right-
looking Cholesky factorization [23], which requires half the
Flops of an LU decomposition. The factorization may be
formed in place on a distributed matrix. We describe our
implementation of this procedure in Section 4.1.

4. IMPLEMENTATION
The three important parts of the implementation, in terms
of execution time, are the first-stage linear algebra, second-
stage linear algebra, and assembly of the Schur complement.
We describe these in Sections 4.1, 4.2, and 4.3, respectively.

4.1 First stage linear systems
The primary linear algebra operation related to the first
stage is solving a dense linear system by using the special-
ized LDLT factorization procedure described in Section 3.2.
We use Elemental [19], a distributed dense linear algebra
library currently under active development.

Elemental uses an element-cyclic matrix distribution for load
balancing. Given an np×mp MPI process grid, the element-
cyclic distribution arises by assigning element (i, j) to pro-
cess (i mod np, j mod mp). Each process has a single column-
oriented local storage buffer, where the local elements are
stored in their original shape, as if there were no elements of
the matrix between them. In comparison, ScaLAPACK [5],
a widely used distributed dense linear algebra package, uses
larger storage blocks, called block-cyclic storage. The prac-
tical significance of the different storage methods in our case
is that element-cyclic distribution makes it easy to perform

operations on arbitrarily sized subblocks, a feature critical
for the specialized LDLT factorization routine.

Listing 1 contains the raw code to perform the factorization,
annotated with the mathematical description. On input, the
distributed matrix B contains the Schur-complement C, and
on output it contains the lower triangular L factor as in (15).
Full explanation of the procedure is given in [?]. Readers fa-
miliar with ScaLAPACK may be surprised by the simplicity
of the Elemental API, which uses objects to refer to matrix
subblocks instead of requiring complicated indexing argu-
ments.

using namespace elemental;
void factorLDLT(DistMatrix<double,MC,MR> &B,

int nx)
{
const Grid &g = B.Grid();
DistMatrix<double,MC,MR> BTL(g), BTR(g),

BBL(g), BBR(g);
// get references to subblocks
// e.g. BTL (B top left) is nx× nx
PartitionDownDiagonal(B,

BTL, BTR,
BBL, BBR,
nx);

// BTL := Chol(Q) = M
lapack::Chol(Lower, BTL);
// BBL := AM−T

blas::Trsm(Right, Lower, Transpose,
NonUnit, 1, BTL, BBL);

// BBR := (AM−T)(AM−T)T = AQ−1AT

blas::Syrk(Lower, Normal, 1, BBL, 0, BBR);

// BBR := Chol(AQ−1AT) = M̃
lapack::Chol(Lower, BBR);

}

Listing 1: LDLT factorization code using Elemental.

Elemental has a special branch for Blue Gene/P systems
(Elemental-BG/P), whose primary feature is the ability to
align the MPI process grid with the topology of the 3D
torus. SMP parallelism is attained through the use of par-
allel BLAS (IBM’s ESSL-SMP) together with OpenMP for
packing and unpacking data.

4.2 Second stage linear systems
Recall that the primary computation for each second-stage
scenario is the“backsolve”phase, that is, formingBT

i K
−1
i Bi.

Note that the Ki matrices are sparse and symmetric in-
definite. We perform the calculation by solving the sparse
system KiXi = Bi for Xi (hence backsolve), then forming
BT

i Xi = BT
i K

−1
i Bi, which is dense because of the matrix

inversion. In the actual implementation, we compute blocks
of columns of BT

i K
−1
i Bi and interlace the computation with

the assembly of C, as described in Section 4.3.

In our current decomposition, each scenario is assigned to
exactly one MPI process. To avoid load-balancing issues,
we consider only cases where the number of MPI processes
divides the number of scenarios, but this is not an intrin-
sic restriction. Second-stage calculations are performed by
using SMP. Therefore, we require a pure-SMP sparse lin-
ear algebra library with support for solving symmetric in-

definite systems with multiple right hand sides. We chose
WSMP [15], a proprietary library by Anshul Gupta of IBM,
because it has all the required features. The most viable
alternative is PARDISO [20]; however, a binary could not
be obtained for the Blue Gene platform. MUMPS [1, 2] is
a primarily MPI-based parallel sparse library, with initial
work still being performed to add hybrid MPI/SMP and
pure SMP capabilities [8].

WSMP manages its own pthreads and requires serial BLAS.
This is a different SMP paradigm from Elemental and re-
quires setting the environmental variable BG_APPTHREADDEPTH
= 2 so that OpenMP and WSMP threads may coexist (WSMP
threads are never destroyed once the library is initialized).
We also call omp_set_num_threads(1) before WSMP
calls, to force serial BLAS, and again after the calls with
argument 4 to restore parallel BLAS and full OpenMP.

4.3 Assembling the Schur complement
The assembly of the Schur-complement C as a distributed
dense matrix in the element-cyclic distribution as required
by Elemental can be a costly operation, possibly more costly
than the factorization itself. This operation must be stream-
lined to obtain acceptable large-scale performance.

We present a simplified version of the summation at Step (7)
in Section 3.1 to form C. To avoid confusion, in this sim-
plified version let B refer to the distributed matrix. Let P
be the set of nodes. The distribution operation we must
perform can be described as

B :=
∑
p∈P

Mp, (16)

where Mp is calculated locally on node p and B is stored
across MPI processes in the element-cyclic distribution.

In the case where B is instead stored in entirety on each
node and linear algebra is performed by using LAPACK (an
approach we previously used, viable only for small B, see
[?]), this operation maps directly to an MPI_Allreduce.
In the current case, however, where B is distributed, two
important considerations make the distribution problem sig-
nificantly more complicated:

• Mp itself is too large to fit entirely in a node’s local
memory in general.

• Every node owns different, noncontiguous elements in
B; however, all nodes contribute to all elements.

To address these issues, we calculateMp in blocks of columns,
and distribute these blocks as they are calculated, interweav-
ing calculation and assembly. The communication pattern
required in fact maps closely to an MPI_Reduce_scatter,
in which a large array is reduced (summed) across all nodes
and then its pieces are partitioned and sent to their des-
tination. However, MPI_Reduce_scatter requires that
each node receive a single contiguous part of the send buffer.
Considering the distribution of the matrix across nodes, a
contiguous column of the matrix cannot be partitioned such
that the elements belonging to a given node are in contigu-
ous memory. Intermediate packing and unpacking steps are
therefore necessary.

A final complication is that for the LDLT factorization, we
would be performing unnecessary work by distributing the
entire symmetric matrix. In initial experiments, we noticed
that the communication time can be even more significant
than the factorization time. We therefore developed and
present a procedure that can effectively cut communication
costs in half by distributing only the lower triangular part.

The distribution procedure comprises three steps: Pack,
Reduce scatter, and Unpack. For a fixed block of columns,
the procedure is as follows. The local backsolve calcula-
tions are performed to fill a column buffer. This is not
considered part of the time taken for the reduce. In the
Pack step, the send buffer is filled with the lower trian-
gular elements according to the distribution required by
MPI_Reduce_scatter. We then call MPI_Reduce_scatter
and Unpack the results into the local matrix storage. This
is repeated for the next block of columns until the matrix
has been completely formed. The procedure is illustrated in
Figure 3.

An important question is choosing the number of columns to
send at each iteration. Note that the backsolve procedure
generates full columns, whereas only the lower triangular
elements are sent. Clearly, if the number of columns is fixed
at each iteration, the MPI_Reduce_scatter calls will send
successively less and less data, leading to larger and larger
communication overhead. The solution is to fix the size of
the send buffer (100 MiB in our tests) and at each iteration
calculate exactly as many columns as whose lower triangular
elements fit in the send buffer. Calculating this number
of columns reduces to solving a simple quadratic equation.
We may avoid an explosion in the size of the column buffer
by storing only the lower triangular elements from the full
columns as they are generated.

While the procedure is generally straightforward, special
care is needed at some points to ensure an efficient im-
plementation. In order to use MPI_Reduce_scatter, the
send buffer must be arranged such that the elements des-
tined for a node are in a single, contiguous block and the
blocks must be ordered according to MPI rank. For fast
unpacking, we also require that inside a block, the order of
elements match their order in the local matrix storage. We
have fully specified a one-to-one map between the location
of the elements in the column buffer and their location in
the send buffer, and theoretically only a permutation of the
column buffer is necessary. An in-place permutation is not
practical because of poor cache performance, so we allocate
a separate array for the send buffer and copy the elements
into their positions. The copy procedure is streamlined and
accelerated with OpenMP, taking care to avoid expensive
division and modulus operations that might näıvely be used
to calculate the required positions of the elements. There is
a small overhead to calculate offsets of the lower triangular
elements.

On Blue Gene/P, MPI_Reduce_scatter is implemented
as an MPI_Reduce followed by MPI_Scatterv. We use the
MPI_COMM_WORLD communicator to ensure that MPI_Reduce
uses the collective network. In the Unpack step, simple
memcpy operations copy the the lower triangular blocks into
the columns of the local matrix storage. This is also ac-

Column Buffer

Send Buffer

Reduce ScatterPack Unpack

Local Matrix StorageRecv Buffer

Figure 3: Illustration of a step of the “lower triangular reduce” procedure. The 3rd and 4th columns are sent
of a 10× 10 distributed matrix on a 2× 2 processor grid. The lower triangular elements are indicated. Dashed
lines indicate communication from other processes. Dots indicate the partitions of the column-major send
buffer. In the illustrated case, only two columns fit in the send buffer. Note that in general, not all MPI
processes will receive an equal number of elements, because of the properties of the matrix distribution.

celerated with OpenMP. MPI types could alternatively be
used here to directly receive into the local matrix storage;
however, MPI_Scatterv on Blue Gene/P is optimized for
contiguous data types. In our experience, the Pack and Un-
pack steps take approximately 10% of the total distribution
time.

Note that there is a necessary synchronization point between
all nodes for each MPI_Reduce_scatter call, which can
magnify possible load imbalances in the backsolve phase.
We are following the proposals for nonblocking collective
operations for the future MPI-3 standard. Our communica-
tion pattern may be a good example of an application for a
potential MPI_Ireduce_scatter.

5. NUMERICAL EXPERIMENTS ON BG/P
In the following sections we investigate the scaling and time-
to-solution properties of PIPS for realistically sized prob-
lems. Finally, we note the sustained performance of the
solver.

5.1 Strong Scaling
We test the strong scaling ability of PIPS using a problem
with a fixed size and number of second-stage scenarios. For
ease of notation, we take k = 1024. We fix a problem with
32k scenarios and perform five interior-point iterations with
4k, 8k, 16k, and 32k nodes, corresponding to 8, 4, 2, and
1 scenarios per node, respectively. Scenarios for the un-
certainty due to weather are obtained by calibrating and
sampling a hidden Markov model whose dynamics is de-
scribed by the physics of the atmosphere, as implemented
in the weather research forecast code WRF [9]. For testing
purposes only, scenarios are replicated by using normal per-
turbations. We use a 4 hour time horizon with the economic

dispatch problem described in Section 2. The first stage has
4,711 variables and 4,431 equality constraints, leading to a
relatively small (9142× 9142) dense Schur-complement ma-
trix. The sparse second stage matrices Ki (4) are of size
44124× 44124.

As shown in figure 4, from 4k to 8k, 16k, and 32k nodes,
we obtain strong scaling efficiencies of 99%, 98%, and 96%,
respectively. Total times for the five iterations are 125, 63,
32, and 16 minutes, respectively.

Figure 5 gives a breakdown of the three most important com-
ponents of the execution time: the backsolves, the factor-
ization, and the distribution of the Schur-complement ma-
trix previously described. The distribution and factorization
steps are communication intensive but, compared with the
backsolves, take little time. The backsolves, which are the
algorithmic bottleneck, are embarrassingly parallel, explain-
ing the nearly ideal strong scaling results observed.

We note that the factorization times increase slightly with
the number of nodes. If the Schur-complement matrix were
larger, we would also observe strong scaling with the fac-
torization, as we investigated in [?]. In this case, however,
communication and not calculation is the bottleneck.

Surprisingly, the time to distribute the Schur complement
decreases slightly as the number of nodes increases. This
behavior is most likely due to a slight increase in load im-
balance. We avoid large load imbalance issues by assigning
each node the same number of scenarios, and therefore each
node performs approximately the same number of calcula-
tions per iteration. However, there is still some variation in
the backsolve times per scenario, which can be compounded
when there are multiple scenarios per node. This imbal-

Strong Scaling

BG/P Nodes

S
p

ee
d
u
p

(b
a
se

li
n
e

4
k
)

4k 8k 16k 32k

4
k

8
k

1
6
k

3
2
k

Linear

PIPS

Figure 4: Parallel speedup for total walltime, 5 it-
erations. k = 1024.

ance is absorbed into the distribution time, which includes
synchronization (no explicit barriers are used).

For the given problem, the strong scaling results indicate
that the ideal configuration is in fact with the minimum
one scenario per node. This is the algorithmic limit of the
decomposition. Before implementation of the SMP model,
the limit was a minimum of one scenario per core.

5.2 Solve to completion
In Section 5.1 we examined strong scaling by performing
five interior-point iterations. This is a reasonable estimate
of strong scaling for any number of iterations, since iteration
time is generally constant. Of course, we are interested in
the solution to the problem, which requires many more than
five iterations.

Because of CPU time restrictions, we were unable to solve
the 32k scenario problem to completion. Instead, we solved
the same problem with 8k scenarios, on 8k nodes. This is
a problem with 115 million total variables. Seventy-four
iterations were required to reduce the duality gap by about
1015 with a barrier parameter µ = 2 × 10−7, one of the
standard termination criteria in interior-point practice [24].
Total execution time was 4 hours 10 minutes, including 7
minutes for initialization.

Larger problems, either with more scenarios or larger sce-
narios, would likely require more iterations. Nevertheless,
interior-point experience tends to be that the number of it-
erations does not vary hugely inside a problem class, even
for different size instances [24]. We therefore expect that the
number of iterations required to observe similar reductions
will be no larger than on the order of 100, even as the number

4k 8k 16k 32k

Backsolve

Factor SC

Distrib. SC

BG/P Nodes

S
ec

./
It

er
a
ti

o
n

0

10

1400

5

200

400

600

800

1000

1200

Figure 5: Components of execution time, averaged
over 5 iterations. Note the break in axis scale;
height differences between backsolves and others are
greater than they appear. Backsolves scale in an
embarrassingly parallel manner with the number
of scenarios per node. Time to factorize and dis-
tribute the Schur-complement (SC) matrix increases
slightly as a result of increased communication over-
head, but remains very small compared with back-
solve time.

of scenarios and time horizons radically increases. We may
use this rationale to estimate the CPU time needed to com-
plete an instance, which is essential in today’s allocation-
limited high-performance computing centers. Clearly, more
numerical evidence is needed to support this subjective es-
timate, which is nonetheless done in light of substantial ex-
perience with such problems.

5.3 24+ hour scenarios
The ultimate goal is to solve problems with 24+ hour sce-
narios in real time, meaning a solution in under an hour.
For 24-hour scenarios, the sparse second-stage matrices Ki

are of size 338284× 338284, and there are over 100,000 de-
cision variables, for a total of about 3.5 billion variables. In
preliminary tests, we determined that the backsolve phase
takes ∼21 minutes per iteration on 32K nodes (compared
with ∼3 minutes for 4-hour scenarios). Unfortunately, this
is far too much for the size of BG/P allocation available
to us. In its current form, it is also too much in terms
of our real-time goal, where it would take about a day to
compute using all of the IBM Blue Gene/P “Intrepid” sys-
tem at Argonne National Laboratory (an estimate based on
a 100 iterations of interior point as described above). We
believe that several algorithmic and resource improvements
would vastly improve the computational time and put us in
a position to solve such problems in real time (we cannot

offer that proof at this time, given both computational and
development time limitations). They include splitting sce-
narios across nodes, increases in computing power (particu-
larly in light of the coming vast increase in number of cores
per node), refinements in the linear algebra, and exploring
warm- and hot-starting for the interior point method, since
rolling horizon problem must be solved repeatedly.

We note that strong scaling performance in the case of larger
scenarios would be even greater than before, since the fac-
torization and distribution times remain effectively constant.
Conversely, speedups in the backsolves will decrease strong
scaling performance but will also decrease total solution
time.

5.4 Sustained performance
We measured total Flops of the entire solver (5 iterations,
4-hour scenarios) using the BG/P Universal Performance
Counter (UPC) unit and obtained∼1% of peak performance,
about 4.4 TFlops on 32 racks. We caution, however, that
sustained performance is in many senses not a reasonable
measure of efficiency for sparse linear algebra, which is the
primary operation in the solver (that is, in the backsolve
phase), because the number of operations required to solve
a sparse system is not fixed. A faster time to solution thanks
to algorithmic improvement could easily decrease the Flops
measured. Additionally, sparse operations by definition are
difficult to vectorize, and often memory access is a bottle-
neck.

6. CONCLUSIONS
We conclude that the computational pattern of stochastic
programming, while far from trivially parallel because of the
synchronization bottleneck required by the first-stage deci-
sion variable computations, can nonetheless be suitable for
massive parallel computing of the type provided by BG/P
and similar systems. This statement is based on scalability
results that we have obtained for up to 128k BG/P cores.
Key to our accomplishment is a judicious use of linear alge-
bra and efficient communication patterns.

Moreover, with algorithmic improvements, we expect that
we will be able to solve such problems faster on existing ar-
chitectures and with comparable scalability profiles on mas-
sively multicore architectures. In addition, we have demonstrated—
for the first time on this scale, to our knowledge—that cer-
tain classes of power grid problems, namely, energy dispatch
problems, can significantly benefit from existing and emerg-
ing very high-performance computing architectures. Such
problems are likely to provide continuing challenges, since
emerging engineering practice in energy dispatch may need
three times longer horizons (California ISO is experimenting
with 72-hour time horizons), 10 times more frequent tempo-
ral decisions due to evolution of energy market structure,
10 times larger spatial network (we are considering only Illi-
nois at this time; the proper size for an ISO is about the size
of the entire Midwest), and a yet-undetermined appropriate
increase in the number of scenarios. While this is a daunt-
ing proposition, at stake is the proper usage of hundreds
of gigawatts. In comparison, the power needed by the su-
percomputer to solve the optimization problem—a popular
metric—would be essentially insignificant.

Acknowledgments
We thank Mike Papka for allocation support at the Argonne
Leadership Computing Facility. We thank Anshul Gupta for
timely support using WSMP and Jack Poulson, primary de-
veloper of Elemental, for continued support. We also thank
Darius Buntinas for a conversation which helped with our
analysis of the communication pattern. This work was sup-
ported by the U.S. Department of Energy under Contract
DE-AC02-06CH11357.

7. REFERENCES
[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and

J. Koster. A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM J. Matrix
Anal. Appl., 23:15–41, January 2001.

[2] P. R. Amestoy, A. Guermouche, and S. Pralet. Hybrid
scheduling for the parallel solution of linear systems.
Parallel Computing, 32:136–156, 2006.

[3] J. R. Birge and F. Louveaux. Introduction to stochastic
programming. Springer-Verlag, New York

”
1997.

[4] J. R. Birge and L. Qi. Computing block-angular
Karmarkar projections with applications to stochastic
programming. Manage. Sci., 34(12):1472–1479, 1988.

[5] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia,
PA

”
1997.

[6] J. R. Bunch and L. Kaufman. Some stable methods
for calculating inertia and solving symmetric linear
systems. Mathematics of Computation,
31(137):163–179, 1977.

[7] J. R. Bunch and B. N. Parlett. Direct methods for
solving symmetric indefinite systems of linear
equations. SIAM Journal on Numerical Analysis,
8(4):639–655, Dec. 1971.

[8] I. Chowdhury and J.-Y. L’Excellent. Some
experiments and issues to exploit multicore parallelism
in a distributed-memory parallel sparse direct solver.
Technical Report RR-7411, INRIA, October 2010.

[9] E. M. Constantinescu, V. M. Zavala, M. Rocklin,
S. Lee, and M. Anitescu. A computational framework
for uncertainty quantification and stochastic
optimization in unit commitment with wind power
generation. IEEE Transactions on Power Systems, in
press, 2010.

[10] G. H. Golub and C. F. Van Loan. Matrix
Computations (Johns Hopkins Studies in
Mathematical Sciences)(3rd Edition). The Johns
Hopkins University Press, 3rd edition, October 1996.

[11] J. Gondzio and A. Grothey. Direct solution of linear
systems of size 109 arising in optimization with interior
point methods. In PPAM, pages 513–525, 2005.

[12] J. Gondzio and A. Grothey. Parallel interior-point
solver for structured quadratic programs: Application
to financial planning problems. Annals of Operations
Research, 152(1):319–339, July 2007.

[13] J. Gondzio and A. Grothey. Exploiting structure in
parallel implementation of interior point methods for
optimization. Computational Management Science,
6(2):135–160, May 2009.

[14] J. Gondzio and R. Sarkissian. Parallel interior point
solver for structured linear programs. Mathematical
Programming, 96:561–584, 2003.

[15] A. Gupta. Wsmp: Watson sparse matrix package.
Technical report, IBM Research Report, 2000.

[16] J. Linderoth and S. Wright. Decomposition algorithms
for stochastic programming on a computational grid.
Comput. Optim. Appl., 24(2-3):207–250, 2003.

[17] S. Mehrotra and M. G. Ozevin. Decomposition based
interior point methods for two-stage stochastic convex
quadratic programs with recourse. Oper. Res.,
57(4):964–974, 2009.

[18] C. G. Petra and M. Anitescu. A preconditioning
technique for Schur complement systems arising in
stochastic optimization. Technical report, Preprint
ANL/MCS-P1748-0510, Argonne National
Laboratory

”
2010.

[19] J. Poulson, B. Marker, and R. A. van de Geijn.
Elemental: A new framework for distributed memory
dense matrix computations (flame working note #44).
Technical report, Institute for Computational
Engineering and Sciences, The University of Texas at
Austin, June 2010.

[20] O. Schenk and L. Gartner. On fast factorization
pivoting methods for symmetric indefinite systems.
Elec. Trans. Numer. Anal., 23:158–179, 2006.

[21] M. Shahidehpour, H. Yamin, and Z. Li. Market
Operations in Electric Power Systems: Forecasting,
Scheduling, and Risk Management. Wiley, New York,
2002.

[22] A. Shapiro, D. Dentcheva, and A. Ruszczyński.
Lectures on Stochastic Programming: Modeling and
Theory. MPS/SIAM Series on Optimization 9,
Philadelphia, PA, USA, 2009.

[23] R. A. van de Geijn. Using PLAPACK. MIT Press,
March 1997.

[24] S. J. Wright. Primal-Dual Interior-Point Methods.
Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1997.

[25] V. M. Zavala, A. Botterud, E. M. Constantinescu, and
J. Wang. Computational and economic limitations of
dispatch operations in the next-generation power grid.
IEEE Conference on Innovative Technologies for an
Efficient and Reliable Power Supply, 2010.

[26] V. M. Zavala, C. D. Laird, and L. T. Biegler.
Interior-point decomposition approaches for parallel
solution of large-scale nonlinear parameter estimation
problems. Chemical Engineering Science,
63(19):4834–4845, 2008.

The submitted manuscript has been created by UChicago Argonne,
LLC, Operator of Argonne National Laboratory (”Argonne”). Ar-
gonne, a U.S. Department of Energy Office of Science laboratory,
is operated under Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf, a
paid-up nonexclusive, irrevocable worldwide license in said arti-
cle to reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on behalf
of the Government.

